US009323540B2

a2 United States Patent 10) Patent No.: US 9,323,540 B2
Fuks et al. (45) Date of Patent: Apr. 26, 2016
(54) TASK EXECUTION DETERMINISM 6,728,781 B1* 4/2004 Aguileraetal. ... 709/240
IMPROVEMENT FOR AN EVENT-DRIVEN 7,350,117 B2* 3/2008 Garciacooovniinn. 714/55
7,630,313 B2* 12/2009 Batnicccccoveennne HO4L 12/24
PROCESSOR 370/235
. . 8,065,279 B2* 11/2011 Erricksonetal. 707/687
(71) Applicant: NXP B.V., Eindhoven (NL) 8,301,937 B2* 10/2012 Joyetal. 714/38.12
8,327,125 B2* 12/2012 Zhang GOG6F 21/575
(72) Inventors: Adam Fuks, Sunnyvale, CA (US);) 713/1
Sergio Scaglia, San Jose, CA (US) 8,489,923 B1* 7/2013 Lakshminara-
yanan ... HO4N 21/2662
o . 709/203
(73) Assignee: NXP B.V,, Eindhoven (NL) 9,100,288 B1* 82015 Ganjam HO4L 43/06
2004/0030819 Al* 2/2004 Williamscccceen. 710/260
(*) Notice: Subject to any disclaimer, the term of this 2004/0034816 Al* 2/2004 Richardcooccoveevennene. 714/39
patent is extended or adjusted under 35 2006/0067227 Al* 3/2006 Batni ... HO4L 12/24
U.S.C. 154(b) by 91 days. _ 370/235
2006/0075061 Al* 4/2006 Garciaccccceoeenee 709/213
. 2011/0119475 Al 5/2011 Chen et al.
(21) Appl. No.: 13/968,374 2011/0126215 Al 52011 Fuks etal.
. 2011/0283028 Al™* 112011 Byers ... GOGF 13/4022
(22) Filed: Aug. 15,2013 710/107
2012/0246339 Al* 9/2012 Huangetal. 709/239
(65) Prior Publication Data 2014/0143580 Al* 5/2014 Vahidsafaccccoenn. 713/400
US 2015/0052340 A1l Feb. 19, 2015 OTHER PUBLICATIONS
(51) Int.CL Adaptive Method and Adaptive Device of Heartbeat CycleDec. 26,
GOGF 11/00 (2006.01) 2012 China.*
GO6F 9/44 (2006.01) . .
(52) US.Cl * cited by examiner
CPC .. GOG6F 9/4401 (2013.01) Primary Examiner — Amine Riad
(58) Field of Classification Search
CPC HO04M 3/30; HO4M 3/24; HO4M 3/248; (57) ABSTRACT
GOG6F 11/1658; GO6F 11/1679; GO6F 11/1683; . . .
GOGF 11/1641: GOGF 11/1961 Embodiments of a method for operating an event-driven pro-
See application file for complete sear,ch histo cessor and an event-driven processor are described. In one
PP P 24 embodiment, a method for operating an event-driven proces-
(56) References Cited sor involves configuring a heartbeat timer of the event-driven

U.S. PATENT DOCUMENTS

processor and handling an event using the event-driven pro-
cessor based on the heartbeat timer. Using a heartbeat timer
built into the event-driven processor, the task execution deter-
minism of the event-driven processor is improved and the
power consumption of the event-driven processor is reduced.

17 Claims, 3 Drawing Sheets

5,175,844 A 12/1992 Fukuda
5,367,699 A 11/1994 Lange et al.
g:gﬁ:gg ﬁ lgﬁggg Eﬁg&iet al. Other embodiments are also described.
6,332,180 B1* 12/2001 Kauffman GO6F 9/5077
711/153
§‘|00
10 PROCESSOR 104
/ C
EVENT
HANDLER
llgIKTUAT EVENT EVENT | EVENT
1
DETECTOR NOTIFICATION :HEARTBEATE RESULT
I TIMER E
106 /(v

U.S. Patent Apr. 26,2016 Sheet 1 of 3 US 9,323,540 B2

100
f

PROCESSOR
102 OGESSO 104
p
EVENT
HANDLER
'g‘KyAT EVENT | EVENT
DEETVEECNTTOR NOTIFICATION HEARTOEN | RESULT
L TIMER |
I————{-____l
106
SPECIFY
HEARTBEAT PERIOD |——202
206 >
\ Y 204
FETCH A
SOFTWARE HEARTBEAT

ROUTINE PERIOD EXPIRED?

EXECUTETHE | 408
SOFTWARE ROUTINE

FIG. 2

U.S. Patent

INPUT
DATA

Apr.26,2016 Sheet 2 of 3 US 9,323,540 B2
SPECIFY L~ 302
HEARTBEAT INTERVAL
A 4
304
HEARTBEAT
INTERVAL PASSED?
36— EXECUTEA
SOFTWARE ROUTINE
PROCESSOR
FVENT [\— 404
HANDLER
402
\ N0~L{ REGISTER
|
EVENT M2
DETECTOR - INTOEFID%%%E%ER
EVENT | | MTERPHEIER EVENT
|
DPEArTETCETRoNR NOTIFIGATION ree— RESULT
L JIMER
|
|| INSTRUCTION
414~ STORE

U.S. Patent Apr. 26,2016 Sheet 3 of 3 US 9,323,540 B2

nrouuurrrrrrrrae

Tua=T/16

V/S7 D0 | D1 [D2 [D3 [D4 [D5 D6 | D7 [P8 P%
N

Il fl l N I l N N I Il
u 4/

’7.

SAMPLE
DETECT START 3 STOPBIT
BIT BY SENSING SAMPLE
TRANSITION FROM INCOMING DATA
LOGIC1TO LOGIC 0 AT THE BIT-CELL
CENTER

FIG. 5

(_ START)

A

CONFIGURE A HEARTBEAT TIMER)
OF THE EVENT-DRIVEN PROCESSOR = &Y

Y

HANDLE AN EVENT USING THE EVENT-DRIVEN
PROCESOR BASED ON THE HEARTBEAT TIMER

L~ 604

Y

16, 6

US 9,323,540 B2

1

TASK EXECUTION DETERMINISM
IMPROVEMENT FOR AN EVENT-DRIVEN
PROCESSOR

For a processor, characteristics such as service bandwidth
for communication with a peripheral and determinism for
task execution are important for the performance. For
example, in a complex multi-central processing unit (CPU) or
multi-peripheral system-on-chip (SoC), service bandwidth
for communication between a CPU or SoC and a peripheral is
generally unpredictable and determinism for task execution
can be difficult. In order to ensure some measure of determin-
ism, software typically partitions a task into smaller units for
which the start of execution can be synched up using an
interrupt. Nonetheless, using an interrupt to re-synchronize
task execution increases overhead in terms of execution. For
example, every time an instruction execution is diverted from
the main thread to the interrupt thread, several cycles are
spent in order for the CPU to perform context switching, such
as, stacking of registers. In addition, the granularity achiev-
able by re-synchronizing task execution using an interrupt is
relatively limited. If software is explicitly written to stall
execution after every one or more instruction, the code size of
the software will increase. Furthermore, repeated execution
of the wait-for-interrupt instructions can increase the code
size and waste computational resources.

Power consumption of a processor is an important perfor-
mance metric. Some CPU tasks are subject to unpredictable
accessing latencies. During the execution of those tasks, the
CPU likely wastes power during idle cycles. For example, the
CPU’s internal circuitry may be running and consuming
power, but no progress is possible due to an external latency.

Embodiments of a method for operating an event-driven
processor and an event-driven processor are described. In one
embodiment, a method for operating an event-driven proces-
sor involves configuring a heartbeat timer of the event-driven
processor and handling an event using the event-driven pro-
cessor based on the heartbeat timer. Using a heartbeat timer
built into the event-driven processor, the task execution deter-
minism of the event-driven processor is improved and the
power consumption of the event-driven processor is reduced.
Other embodiments are also described.

In an embodiment, a method for operating an event-driven
processor involves configuring a heartbeat timer of the event-
driven processor and handling an event using the event-driven
processor based on the heartbeat timer.

In an embodiment, an event-driven processor includes an
instruction store configured to store an instruction set that
includes computer executable instructions to implement a
heartbeat timer within the event-driven processor. The event-
driven processor also includes an operation code interpreter
to configure the heartbeat timer and to handle an event based
on the heartbeat timer.

In an embodiment, a method for operating an event-driven
processor involves configuring a heartbeat timer that is inte-
grated into an instruction set of the event-driven processor.
Configuring the heartbeat timer includes specifying a heart-
beat period for the event-driven processor and counting down
the heartbeat timer to a predefined value until the heartbeat
period expires. The method also involves executing a soft-
ware routine using the event-driven processor in response to
an event when the heartbeat timer reaches the predefined
value, where the software routine includes a machine lan-
guage instruction that specifies an operation to be performed
by the event-driven processor.

Other aspects and advantages of embodiments of the
present invention will become apparent from the following

10

15

20

25

30

35

40

45

50

55

60

65

2

detailed description, taken in conjunction with the accompa-
nying drawings, depicted by way of example of the principles
of the invention.

FIG. 1 is a schematic block diagram of a processor in
accordance with an embodiment of the invention.

FIGS. 2 and 3 are flow charts that illustrate two exemplary
operations of the processor depicted in FIG. 1.

FIG. 4 depicts an embodiment of the processor depicted in
FIG. 1.

FIG. 5 illustrates an embodiment of an operation of the
processor depicted in FIG. 4.

FIG. 6 is a process flow diagram of a method for operating
an event-driven processor in accordance with an embodiment
of the invention.

Throughout the description, similar reference numbers
may be used to identify similar elements.

It will be readily understood that the components of the
embodiments as generally described herein and illustrated in
the appended figures could be arranged and designed in a
wide variety of different configurations. Thus, the following
detailed description of various embodiments, as represented
in the figures, is not intended to limit the scope of the present
disclosure, but is merely representative of various embodi-
ments. While the various aspects of the embodiments are
presented in drawings, the drawings are not necessarily
drawn to scale unless specifically indicated.

The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by this detailed description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

Reference throughout this specification to features, advan-
tages, or similar language does not imply that all of the
features and advantages that may be realized with the present
invention should be or are in any single embodiment. Rather,
language referring to the features and advantages is under-
stood to mean that a specific feature, advantage, or character-
istic described in connection with an embodiment is included
in at least one embodiment. Thus, discussions of the features
and advantages, and similar language, throughout this speci-
fication may, but do not necessarily, refer to the same embodi-
ment.

Furthermore, the described features, advantages, and char-
acteristics of the invention may be combined in any suitable
manner in one or more embodiments. One skilled in the
relevant art will recognize, in light of the description herein,
that the invention can be practiced without one or more of the
specific features or advantages of a particular embodiment. In
other instances, additional features and advantages may be
recognized in certain embodiments that may not be present in
all embodiments of the invention.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the indicated embodiment is included in at
least one embodiment. Thus, the phrases “in one embodi-
ment,” “in an embodiment,” and similar language throughout
this specification may, but do not necessarily, all refer to the
same embodiment.

FIG. 1 is a schematic block diagram of a processor 100 in
accordance with an embodiment of the invention. The pro-
cessor 100 allows a controllable slow down of the execution
of'atask, as well as ensures to a large extent deterministic task
execution, as described in details below. In the embodiment
depicted in FIG. 1, the processor 100 is an event-driven pro-
cessor that includes an event detector 102 that checks for the

US 9,323,540 B2

3

occurrence of an event based on input data and an event
handler 104 that handles the event in response to an event
notification from the event detector. An “event” is a pre-
defined occurrence. Examples of events may include, but are
not limited to, user actions (e.g., keyboard actions, mouse
actions), completion of an internal I/O function, timed hard-
ware events, and arrival of data from another computer. The
event-driven processor can overlap the execution of compu-
tation functions with the execution of input/output (1/0) func-
tions. An event-based software program enables the event-
driven processor to run multiple tasks using a computation
structure that features a main control loop (“main loop™) that
allows a callback function when an event occurs outside the
program of the main loop. In some embodiments, an event-
driven program uses a library of events that contains an asso-
ciation table correlating specific events with specific callback
functions. The callback functions may be machine instruc-
tions directing the event-driven processor to take specific
actions. Examples of processor actions may include, but are
not limited to, executing predefined computation functions,
transmitting notifications, and database queries. A callback
function is associated with a corresponding event type. The
event-driven processor can execute a sequence of callback
functions in response to one or more successive events.

In some embodiments, the event-driven processor 100 is a
microcontroller that is designed for one or more specific,
dedicated applications. For example, the event-driven proces-
sor can execute machine instructions as directed by callback
functions that are specified by triggering events. In additionto
the event detector 102 and the event handler 104, the event-
driven processor may also contain other components, such as
timers, serial or parallel /O interfaces, and program memory.
However, in some other embodiments, the event-driven pro-
cessor is a general purpose processor, such as a CPU.

Conventional interrupt-driven processors cannot stop pro-
cessing while waiting for an event to occur. Instead, conven-
tional interrupt-driven processors constantly execute instruc-
tions, which is not only time consuming but also drains
system resources. For some events like I/O operations from
infrequently-used peripherals, such as, for example, faxes,
scanners, and printers, persistent monitoring results in a great
waste of energy and system resources.

In the embodiment depicted in FIG. 1, the event-driven
processor 100 is a non Interrupt-driven processor. Compared
to conventional interrupt-driven processors, the event-driven
processor 100 depicted in FIG. 1 allows a controllable slow
down of the execution of a task, as well as ensures to a large
extent deterministic task execution. In an embodiment, the
event-driven processor has its own “heartbeat” timer such that
either each instruction can be executed after a certain delay or
whole blocks of code can be aligned to start at deterministic
points in time. Compared to a conventional interrupt-driven
processor, the event-driven processor can be implemented
with a limited code size increase. Using the event-driven
processor, instructions can be fetched at full speed but execu-
tion of the operation code (opcode) is stalled until a heartbeat
is generated (i.e., a heartbeat timer reaches a predefined
threshold value such as zero). An opcode may be a machine
language instruction that specifies the operation to be per-
formed. Synchronizing the execution with a heartbeat timer
gives a user a powerful tool to create a “snap-to-grid” style
(i.e., deterministic as in a grid) execution where even though
the event-driven processor may experience various latencies,
it is still possible to ensure predictable deterministic execu-
tion. As long as the next instruction is fetched during the
duration of a heartbeat counter/timer countdown, software
instructions can be executed on time. In other words, regard-

10

15

20

25

30

35

40

45

55

60

65

4

less what kind of latency each instruction fetch or data read/
write experiences, as long as the instruction is fetched before
the heartbeat counter reaches zero, a deterministic execution
can be achieved. Setting the event-driven processor to syn-
chronize all its opcodes to given heartbeat intervals allows the
event-driven processor to dynamically change its execution
speed without affecting the connection with a peripheral.
Consequently, the event-driven processor can easily switch
from executing at one pace to executing at another (i.e.,
slower or quicker) pace by increasing or decreasing the heart-
beat interval. Because the event-driven processor can change
execution speed, the event-driven processor can be agile in
terms of execution speed when necessary and slower and
more deterministic at other times. In addition, the event-
driven processor can shut down the processing functionality
in between heartbeat intervals to reduce the power consump-
tion from task execution. For example, the event-driven pro-
cessor can save power when the length of time taken to
execute a task is not finite and when faster execution does not
reduce the task execution duration.

In the embodiment depicted in FIG. 1, a heartbeat timer
106 is implemented inside the event-driven processor 100.
For example, the heartbeat timer can be implemented in the
event handler 104. The heartbeat timer can be implemented in
hardware and/or software stored in a computer readable stor-
age medium. In some embodiments, the event handler con-
figures the heartbeat timer and handles an event based on the
heartbeat timer. In an embodiment, the event handler specifies
a heartbeat period for the event-driven processor, fetches a
software routine before the heartbeat period expires, and
executes the software routine in response to one or more
events detected by the event detector 102 after the heartbeat
period expires. A heartbeat period for the event-driven pro-
cessor is the time period of one cycle of the heartbeat timer
106. For example, in one cycle of the heartbeat timer 106, the
heartbeat timer 106 is counted a predetermined number (i.e.,
an integer) of counts. The event handler can also specity a
different heartbeat period for the event-driven processor after
the heartbeat period expires. In an embodiment, the event
handler counts down a heartbeat timer to a predefined value
(e.g., zero) and executes the software routine when the heart-
beat timer reaches the predefined value. The event handler
can also specify a heartbeat interval for the event-driven pro-
cessor and repetitively execute software routines in response
to one or more detected events at the heartbeat interval.

In some embodiments, the heartbeat timer 106 is imple-
mented in an instruction set of the event-driven processor
100. The instruction set includes computer executable
instructions (i.e., software code) that are used to implement
the computing functions of the event-driven processor 100.
For example, the instruction set can include software code for
data handling and memory operations, such as setting a reg-
ister to a value and moving data between memory locations.
The instruction set can also include software code for arith-
metic and logic operations. For example, the instruction set
can include software code for adding, subtracting, multiply-
ing, or dividing numeric values, and/or software code for
performing bitwise operations. The heartbeat timer can be
programmed to any value (e.g., any non-negative integer). For
example, the heartbeat timer can repetitively count down to
zero. When zero is reached, a corresponding software routine
is executed. Generally, no processor system message is gen-
erated or emitted when the heartbeat timer counts to zero. The
event-driven processor can be programmed to either synchro-
nize all opcode execution to a heartbeat interval or to execute
a stall of execution until the next heartbeat interval. Synchro-
nizing all opcodes to the heartbeat timer allows for com-

US 9,323,540 B2

5

pletely deterministic task execution even if there is bus con-
tention between the event-driven processor and another entity
on the bus. Consequently, the heartbeat timer gives the event-
driven processor both the ability to time its own operation and
the ability to reduce its power profile on the fly without
affecting system performance and external clock frequency.
Because the event-driven processor can operate at full speed
or throttle the execution part of the pipeline, the event-driven
processor can perform snap-to-grid execution. In addition,
because the heartbeat timer can be implemented within the
instruction set of the processor 100, the event-driven proces-
sor can operate as a peripheral.

FIGS. 2 and 3 are flow charts that illustrate two exemplary
operations of the processor 100 depicted in FIG. 1. In some
embodiments, the heartbeat timer 106 is counted to a pre-
defined threshold value (e.g., zero) based on a heartbeat
period. In the operation depicted in FIG. 2, a heartbeat period
of'the heartbeat timer 106 is specified at step 202. At step 204,
the processor checks whether or not the heartbeat period has
expired. If the heartbeat period has not expired, the processor
fetches a software routine at step 206. If the heartbeat period
has expired, the processor executes the fetched software rou-
tine at step 208. Because the event-driven processor 100
synchronizes the execution of a software routine with a heart-
beat period, the task execution determinism of the event-
driven processor is enhanced. In addition, because software
code can be pre-fetched into the event-driven processor while
the event-driven processor waits for the heartbeat period to
expire, the operation efficiency of the event-driven processor
is improved.

In some embodiments, the heartbeat timer 106 is periodi-
cally counted to a predefined threshold value (e.g., zero)
based on a heartbeat interval that defines the time between
two consecutive heartbeats. In the operation depicted in FIG.
3,aheartbeat interval of the heartbeat timer 106 is specified at
step 202. At step 304, the processor 100 checks whether or not
one or more heartbeat intervals have passed from the time
point at which the heartbeat interval is specified. If one or
more heartbeat intervals have passed, the processor executes
a software routine at step 306. If one or more heartbeat inter-
vals have not passed, the processor goes back to step 304 and
rechecks whether or not one or more heartbeat intervals have
passed. The processor can pre-fetch the software routine
between heartbeat intervals. Because the event-driven pro-
cessor 100 synchronizes the execution of software routines
with heartbeat intervals, the task execution determinism of
the event-driven processor is enhanced.

FIG. 4 depicts an embodiment of the event-driven proces-
sor 100 depicted in FIG. 1 that includes a heartbeat timer 206
implemented in the instruction set of an event-driven proces-
sor 400. In the embodiment depicted in FIG. 4, the event-
driven processor 400 includes an event detector 402 that
checks for the occurrence of an event based on input data and
an event handler 404 that handles the event in response to an
event notification from the event detector. The event-driven
processor 400 depicted in FIG. 4 is one of the possible imple-
mentations of the event-driven processor 100 depicted in FI1G.
1. However, the event-driven processor 100 depicted in FIG.
4 is not limited to the event-driven processor 400 depicted in
FIG. 2.

The event detector 402 of the event-driven processor 400
includes a pattern detector 408 that is configured to monitor at
least one event from a series of external inputs. The pattern
detector may monitor multiple events simultaneously. The
pattern detector may monitor for a combination of events to
occur and provide a positive logical bit when a combination of
events is true. A user may configure the pattern detector to

10

15

20

25

30

35

40

45

50

55

60

65

6

monitor for a Boolean event source combination. The output
of'the pattern detector may be a logic bit, suchas a “1” or “0.”
In an embodiment, the pattern detector uses a number of
software bit slices to monitor external inputs for at least one
triggering event to occur. Each bit slice monitors a single
external input for a triggering event.

The event handler 404 of the event-driven processor 400
includes an opcode interpreter 412, an instruction store 414,
and at least one register 410. The opcode interpreter retrieves
and executes at least one instruction. The instruction store
maintains a list of instructions for the microprocessor to
retrieve and register stores opcodes that enable various func-
tions of the event-driven processor. In the embodiment
depicted in FIG. 4, the instruction store stores the instruction
set into which the heartbeat timer of the event-driven proces-
sor is built. The register may be implemented in a memory
component, such as a flash, RAM, or ROM memory.

In some embodiments, the opcode interpreter 412 fetches,
decodes, and executes the opcodes from machine instructions
retrieved from, for example, the instruction store 414. In an
embodiment, the opcode interpreter executes a series of
machine instructions stored in the instruction store. Some
machine instructions may alter the state of a state machine in
the opcode interpreter. The execution of a specific instruction
or subroutine of instructions in the opcode interpreter may be
triggered by the output of the pattern detector 208. In some
embodiments, the opcode interpreter may include a state
machine that maintains multiple states and may change state
based on the execution of specific instructions. In an embodi-
ment, the opcode interpreter operates using four fundamental
processing steps utilizing machine instructions: fetch,
decode, execute, and writeback.

An example of the operation of the opcode interpreter 412
is described as follows. In a fetching step, the opcode inter-
preter retrieves a machine instruction stored in an instruction
memory, such as the instruction store 414. The retrieved
instruction may include an operation code (opcode) that
specifies to the opcode interpreter which operation to perform
and, may also provide one or more operands or other param-
eters for the instructed operation. The storage of instructions
for the opcode interpreter may be the instruction store,
another memory device within the event-driven processor
400, or an instruction cache memory off of the event-driven
processor. The opcode interpreter may then follow its fetch
instruction to decode the fetched instruction.

A traditional interrupt-driven processor typically replies
on an external timer as an interrupt source, which not only
introduces latency but also causes jitter. For example, an
interrupt-driven processor usually performs the stacking of'its
internal registers before entering the Interrupt Service Rou-
tine (ISR). In addition, the reconfiguring of the timer may also
introduce further jitter. Compared to a traditional interrupt-
driven processor, the event-driven processor 400 has less
jitter. In particular, the event-driven processor 400 has a built-
in heartbeat timer 406 that is implemented in the instruction
set of the event-driven processor. For example, the heartbeat
timer 406 can be applied by software code of the instruction
set.

The integration of the heartbeat timer 406 into the instruc-
tion set of the event-driven processor 400 allows a program-
mer to realize functions that are generally unattainable for
traditional processors. For example, an interval can be timed
by configuring the heartbeat timer (e.g., by executing a heart-
beat configuration “HEART_BEAT_CONFIG” routine/pro-
cedure) and then waiting for the heartbeat timer to reach a
predefined threshold value (e.g., by executing a waiting for
heartbeat “WAIT_FOR_BEAT” routine) through the opcode

US 9,323,540 B2

7

interpreter 412. This approach can be used to guarantee that
the following opcode executes at exactly the time interval
specified from the point at which the heartbeat configuration
opcode has executed. In addition, instructions can be repeti-
tively executed at regular heartbeat intervals. For example,
the waiting for heartbeat routine can be used whenever the
code needs to stall to wait for the next beat. Further, the
heartbeat timer can be configured through a single opcode to
force execution of each opcode only when the heartbeat timer
reaches the predefined threshold value.

The internal heartbeat timer 406 can be used to achieve
concatenated delay. For example, a waiting for heartbeat rou-
tine can be followed up with a heartbeat configuration instruc-
tion to guarantee that a new heartbeat cycle starts immedi-
ately at the point the previous heartbeat cycle stop. A pseudo
code example that uses the heartbeat timer to achieve concat-
enated delay is described as follows with reference to a data
sampling operation as shown in FIG. 5. The code example can
be used for the event-driven processor 400 (e.g., the opcode
interpreter 412) to execute the functions of a Universal Asyn-
chronous Receiver/Transmitter (UART). In the case of the
UART, the first wait time is for half a bit-time (1/2), the
following wait is for a complete bit-time (T) to allow sam-
pling in the middle of each bit. A bit time (T) is a bit period,
which is equal to the inverse of the Baud rate of the UART.
The UART can oversamples each bit n (n is a positive integer
that is larger than one) times and each bit time (T) is equal to
n time of an oversample period “Tua” In the embodiment
depicted in FIG. 5, the UART oversamples each bit 16 times
and each bit time (T) is equal to 16 times of an oversample
period “Tua.”

10

15

20

25

30

8

“HEART _BEAT_ CONFIG” routine and is checked to make
sure that the data is not a glitch. If the data is a glitch, the
program goes back to the “WAIT_LOOP” If the data is not a
glitch, the data is processed through a loop procedure
“LOOP,” for example, eight or nine times depending on the
parity bit “PB”. In the “LOOP,” a “WAIT_FOR_BEAT” rou-
tine is executed after the heartbeat synchronization time (1)
expires from the moment the “HEART_BEAT_CONFIG”
routine is executed, as shown at data sample point @ of FIG.
5. Subsequently, in the “LOOP,” a processing procedure
“LOAD_AND_ACCUMULATE_DATA” is executed to read
and accumulate data and a conclusion procedure
“SHIFT_ACC_RIGHT_17is execute to prepare for next data
bit. After the loop procedure “LOOP” is executed, a
“WAIT_FOR_BEAT” routine is executed after the heartbeat
synchronization time (T) expires, as shown at data sample
point @ of FIG. 5. Subsequently, if the stop bit “P” of the data
is verified, the processed data is deemed as valid and read into
a database. If the stop bit of the data is not verified, the
processed data is discarded and the program goes to the
“WAIT_LOOP”.

FIG. 6 is a process flow diagram that illustrates a method
for operating an event-driven processor in accordance with an
embodiment of the invention. The event-driven processor
may be the event-driven processor 100 depicted in FIG. 1 or
the event-driven processor 400 depicted in FIG. 4. At block
602, a heartbeat timer of the event-driven processor is con-
figured. At block 604, an event is handled using the event-
driven processor based on the heartbeat timer.

Although the operations of the method herein are shown
and described in a particular order, the order of the operations
of the method may be altered so that certain operations may
be performed in an inverse order or so that certain operations

PSEUDO-CODE:
WAIT_LOOP
HEART_BEAT CONFIG(T/2)
WAIT_FOR_TRIGGER
WAIT_FOR_BEAT
HEART_BEAT CONFIG(T)
time. Configure for T
LOAD_DATA
IF DATA = 1 GOTO WAIT_LOOP
bit (and not a glitch)
LOOP (8 times)
to go through the Data
WAIT_FOR_BEAT @ J/ Sync, with bit-cell center (for Data bits)
LOAD_AND_ACCUMULATE_DATA // Read and
Accumulate Data
SHIFT_ACC_RIGHT_1
END LOOP
WAIT_FOR_BEAT
IF DATA = 0 GOTO WAIT_LOOP
otherwise discard the reception
DATA_READ_IS _VALID

// configure for T/2
// detect Start bit

// Read the data

@// Syne. with bit-cell center (for Start bit)
// from now on, need to sync every T

@// Syne. with bit-cell center (for Stop bit)
// need to verify Stop bit;

// need to be sure it’s a Start

// loop 8 (or 9 if parity) times

// prepare for next Data bit

// end: Data is read and valid

The code example starts with a loop “WAIT_LOOP” that ;5 may be performed, at least in part, concurrently with other

contains a “HEART_BEAT_CONFIG” routine that specifies
the heartbeat synchronization time (i.e., the wait time) for half
a bit-time ('T/2). Subsequently, as shown at data sample point
@ of FIG. 5, a “WAIT_FOR_TRIGGER?” routine is used to
detect the start bit “S” by sensing transition from logic “1” to
logic “0.” A “WAIT_FOR_BEAT” routine is executed after
the heartbeat synchronization time (1/2) expires from the
moment the “HEART_BEAT_CONFIG” routine is executed,
as shown at data sample point @ of FIG. 5. Subsequently, a
“HEART_BEAT_CONFIG” routine that specifies the heart-
beat synchronization time for one bit-time (T) is executed.
Data “D,”-“D,” is loaded after the execution of the

60

65

operations. In another embodiment, instructions or sub-op-
erations of distinct operations may be implemented in an
intermittent and/or alternating manner.

In addition, although specific embodiments of the inven-
tion that have been described or depicted include several
components described or depicted herein, other embodiments
of the invention may include fewer or more components to
implement less or more features.

Furthermore, although specific embodiments of the inven-

tion have been described and depicted, the invention is not to
be limited to the specific forms or arrangements of parts so

US 9,323,540 B2

9

described and depicted. The scope of the invention is to be
defined by the claims appended hereto and their equivalents.

What is claimed is:

1. A method for operating an event-driven processor, the
method comprising:

configuring a heartbeat timer of the event-driven processor,

wherein configuring the heartbeat timer of the event-
driven processor comprises specitying a first heartbeat
period for the event-driven processor;

handling an event using the event-driven processor based

on the heartbeat timer; and

specifying a second heartbeat period for the event-driven

processor after the first heartbeat period expires,
wherein the second heartbeat period is longer than the
first heartbeat period, and wherein the second heartbeat
period is twice the first heartbeat period.

2. The method of claim 1, wherein the heartbeat timer is
integrated into an instruction set of the event-driven proces-
sor.

3. The method of claim 1, wherein handling the event using
the event-driven processor comprises executing a software
routine using the event-driven processor in response to the
event after the first heartbeat period expires.

4. The method of claim 3, wherein handling the event using
the event-driven processor comprises fetching the software
routine into the event-driven processor before the first heart-
beat period expires.

5. The method of claim 3, wherein the software routine
comprises a machine language instruction that specifies an
operation to be performed by the event-driven processor.

6. The method of claim 1, wherein configuring the heart-
beat timer of the event-driven processor further comprises
counting down the heartbeat timer to a predefined value until
the first heartbeat period expires.

7. The method of claim 6, wherein handling the event using
the event-driven processor comprises executing a software
routine in response to the event when the heartbeat timer is
counted down to the predefined value.

8. The method of claim 1, wherein configuring the heart-
beat timer of the event-driven processor comprises specifying
a heartbeat interval for the event-driven processor.

9. The method of claim 8, wherein handling the event using
the event-driven processor comprises repetitively executing
software routines using the event-driven processor in
response to the event at the heartbeat interval.

10. The method of claim 1, wherein the first heartbeat
period is half a bit-time (1/2), and wherein the second heart-
beat period is a complete bit-time (T).

11. An event-driven processor comprising:

an instruction store configured to store an instruction set,

wherein the instruction set comprises computer execut-
able instructions to implement a heartbeat timer within
the event-driven processor; and

an operation code interpreter to configure the heartbeat

timer and to handle an event based on the heartbeat
timer, wherein the operation code interpreter is config-

10

15

20

25

30

35

40

45

50

55

10

ured to specify a first heartbeat period for the event-
driven processor and to specify a second heartbeat
period for the event-driven processor after the first heart-
beat period expires, wherein the second heartbeat period
is longer than the first heartbeat period, and wherein the
second heartbeat period is twice the first heartbeat
period.

12. The event-driven processor of claim 11, wherein the
operation code interpreter is configured to:

fetch a software routine before the first heartbeat period

expires; and

execute the software routine in response to the event after

the first heartbeat period expires.

13. The event-driven processor of claim 12, wherein the
software routine comprises a machine language instruction
that specifies an operation to be performed by the operation
code interpreter.

14. The event-driven processor of claim 12, wherein the
operation code interpreter is configured to:

count down the heartbeat timer to a predefined value until

the first heartbeat period expires; and

execute the software routine when the heartbeat timer

reaches the predefined value.

15. The event-driven processor of claim 11, wherein the
operation code interpreter is configured to:

specify a heartbeat interval for the event-driven processor;

and

repetitively execute software routines in response to the

event at the heartbeat interval.

16. A method for operating an event-driven processor, the
method comprising:

configuring a heartbeat timer that is integrated into an

instruction set of the event-driven processor, wherein

configuring the heartbeat timer comprises:

specifying a first heartbeat period for the event-driven
processor; and

counting down the heartbeat timer to a predefined value
at which point the first heartbeat period expires; and

executing a software routine using the event-driven proces-

sor in response to an event when the heartbeat timer

reaches the predefined value, wherein the software rou-

tine comprises a machine language instruction that

specifies an operation to be performed by the event-

driven processor; and

specifying a second heartbeat period for the event-driven

processor after the first heartbeat period expires,
wherein the second heartbeat period is longer than the
first heartbeat period, and wherein the second heartbeat
period is twice the first heartbeat period.

17. The method of claim 16, further comprising fetching
the software routine into the event-driven processor before
the first heartbeat period expires.

#* #* #* #* #*

